Lightrun

FEB 2022

Lightrun - Product Overview

ABOUT LIGHTRUN

Lightrun - A Developer-Native
Observability Platform

Lightrun builds an IDE-Native observability platform that enables
developers to securely add logs, metrics and traces to live applications
in real time, on demand. No hotfixes, redeployments or restarts are
required.

Developers use Lightrun for multiple code-level observability needs,
including:

Code-level alerts

Feature verification as part of
progressive delivery
(blue/green and feature flags)

Testing / Debugging of live
applications, without redeployment

Code flow investigation
Troubleshooting Microservices/Serverless/Big Data workers

Pinpointed performance analysis

Lightrun eliminates the need to reproduce bugs locally or issue a new
software version in order to add new logs or metrics to troubleshoot
production issues. As a result, Lightrun's customers consistently
reduce their MTTR by up to 50-60% and significantly improve
development productivity. Issues that used to take 1-2 weeks to
mitigate now take our customers on average less than an hour to
solve.

Lightrun empowers our customers' developers by eliminating the
need for costly developer lifecycle operations like reproducing
locally, or issuing a new software version just for adding new logs or
metrics.

With customers varying from Fortune 500 (including F10
companies) to SMEs and SMBs across multiple verticals,
Lightrun is continuously shifting-left the observability landscape
and empowering developers through strategic partnerships
such as with IBM, HashiCorp and Dynatrace. Lightrun was
named a 2021 Gartner Cool Vendor in Observability.

Gartner

COOL

VENDOR

Lightrun is backed by Insight Partners & Glilot Capital Partners.

kkkkkkkkkkkkkkkkkkkkkk

LIGHTRUN USE CASES

Lightrun can be used for the following use cases:

Debugging live applications both for production and pre-
production environments

Developers code level alerts

Verifying new features

Testing in progressive delivery workflows

Performance analysis with metrics on demand

Onboarding new developers with legacy applications

Code flow analysis

Debugging 3rd party or OS code

Data-centers which allow cloud/microservices migration

Debugging ML pipelines and Big Data infrastructure

WHY LIGHTRUN

Full Observability

Lightrun is an observability platform which empowers developers to
observe and troubleshoot live applications, without redeployment.

It allows developers to easily and securely add logs, metrics and traces to
development, staging and production environments in real-time and on-
demand.

Lightrun can be used for numerous
needs, including:

’ ' — _ DEBUGGING
R CODE-LEVEL ALERTING
FEATURE VERIFICATION

PINPOINT PROFILING

SUPPORTED TECHNOLOGIES

fightrun Supports Your Runtime

Lightrun offers rich plugins for popular JetBrains IDEs and VS Code for all
supported languages, as well as a CLI for programmatic Lightrun usage.
In addition, Lightrun is deployment-agnostic - we work wherever our
supported runtimes do.

a 2 3

@ python t,(S)Java ﬂ\l®d¢

—_—

—

Developer-Native

Lightrun enables developers to troubleshoot, test and debug their
applications by investigating issues directly in the environment in which
they occur, including development, staging and production
environments.

Handling Unknown Unknowns

Lightrun enables developers to observe and tackle issues they did not
anticipate and account for during development - so-called unknown-
unknowns - on the fly, and offers more observability without redeploying
or restarting the live application.

Lightrun Introduction

The Lightrun plugin’s interface is intuitive and fits right into the
developer’s workflow - Lightrun Actions are created from inside the
editor’'s window, and information is presented inside rich, interactive
sidebars and consoles.

Choose a line of code you Add logs, metrics and traces to running
1 would like to get more runtime 2 service from IDE (without stopping or
information about slowing it down)

@ Lightrun

=)

Project ProductsController.java ProductsService java
v B store-demo [shopping]
> B idea
[>
ML 36 (cat == Category.ALL) {

i > Dev
v B main eturn getAl1Q)

} > Staging

unay6ry

List<Product> getCategoryProducts(Category cat)

v b java
v B io.lightrun_tech.demo.shopping
v B backend > List<Product> products = getALL() > Production
OB

+ B sontroller nfo There are {products.size()} Products

ProductsController (Product p : products) {
v Bu entities 42 (p.getCategory() == cat) {
Product 3 response.. add(p) > AWS East Production Bravo Dev

> AWS East Production Alpha Dev

v B services
!) 3 (p.getCategory() == Category.NONE) { > AWS West Production Charlie Product.
ProductsService

ShoppingApplication hrow new IllegalStateException > AWS Europe Production Delta
v B resources 6 5
> B static

v Bu templates

> Digital Ocean Production Echo

index.html
shop.html

shop-detail.html 5 return response

@ Lightrun o _

T Filter ~ no s pe ¥ Waming ® Info ® Debug

® 192.168.0.33 (pid 5089): There are 10 Products ®

Lightrun Console

Elastic Cloud ' Elasticsearch Service
Deployments | 277bacb | Elasticsearch | Logs
= Logs aWs s East (N. Virginia
Timestamp Level Instance / Zone Message
Mar19, 2020, 1200:00PMUTC INFO 10Gus-cast... There are 10 Products

[instance-0000000000] snapshot [found-

:03 PA @us- .
Mar 19,2020, 1230:03PMUTC INFO 10@US-€8St o ooz bocageq WeRAEY3F

Mar 19, 2020, 12:00:00 PMUTC ~ WARN i0@us-east.. Category is SHIRTS

See info immediately at runtime, e
in your IDE or preferred integration

. § [instance-0000000000] snapshot lifecycit
ar i« A @us: B
Mar 19,2020, 123000PMUTC INFO 10@us-east... .. iion for [cloud-snapshot-2020.03.19-

Mar 19,2020, 12:00:00PMUTC ~ ERRO i0@us-east.. Failed to find product of category SHOES

[instance-0000000000] snapshot [found-

0:03 PA F @us-ez
Mar 19, 2020, 120003PMUTC INFO 10@us-east.. 3, qx1cqfmfavmscaxwha/WwweNFawRL

Introducing: Logs

We've all felt the frustration and irritation of missing a log in the exact
place we needed one. Lightrun enables you to add logs in real-time -
while the service is still running. No need to release a new version to see
the added log data.

ProductsController.java ProductsService.java

34 List<Product> response = new ArraylList<>(Q);
35 for(Category c : Category.values()) {

36 if(c != Category.NONE) {

37 if(c == Category.ALL) {

38 products.add(p)

39 } else {

40 products . add(getRandomProductFromCategory(c))
41

42

43

44 urn products

Agent Toms-MBP (pid 3914)

45 }
46 public List<Product> getCa:

File ProductsService.java = Agent

ALightrun agent is attached to
your running production service at
Condition all times.

47 Format Category: {c}
48 if(cat == Category.ALL) {
49 return getAllQ);

Log will appear in your application logs
50 }
File

Current source code file.

Expressions

Add expressions to be evaluated at
runtime alongside the rest of the
trace, if you need to see something
specific.

You Can:

Conditions

Q 0 Q Q Trigger snapshot invocation
e Troubleshoot live applications easily by conditionally by specifying any

expression - as simple or as
complex as you'd like.

dynamically adding log lines
e Add as many logs as you need until you
identify the problem
¢ All logs are added to runtime immediately
e Add logs with the click of a button
e Add logs to multiple instances of a running production service with

our tagin mechanism

Introducing: Snapshots

When you need to explore your stack trace and variables thoroughly,
add a Lightrun snapshot in real-time and on-demand. This virtual
breakpoint extracts all the data you need for investigating without
pausing the process.

ProductsController.java ProductsService.java

Agent
34 L List<Product> getRandomPerCategory() { a Lightrun agent is attached to your

35 List<Product> response = ArrayList<>Q); running production service at all times.
36 r(Category c : Category.values()) {

37 f(c 1= Category.NONE) { File
38 (c == Category.ALL) { Current source code file.

39 products.add(p)
40 3 !
41

Expression
Add expressions to be evaluated at
runtime alongside the rest of the trace, if
you need to see something specific.

Agent Toms-MBP (pid 3914)

Condition

Trigger snapshot invocation conditionally

j Emem ! by specifying any Java Expression - as
Condition p.toString() 1= 2 simple or as complex as you'd like.

45 File ProductsService.java

You Can:

e Explore variable values and arguments at runtime,
for every line of code in your application
e Explore the stack trace and the variables at every frame
e Add as many snapshots as you need without pausing the process
¢ Add Watch Expressions
e Tagging mechanism enables multi-instance support (microservices, big data

workers)

Introducing: Metrics

Measure any performance, synchronization or business logic metric in
real-time. Get answers immediately to find bottlenecks without affecting
system performance.

ProductsController.java ProductsService.ja:

34 List<Product> response =

35 for(Category c : Category.valu

36 if(c !'= Category. J{

37 if(c == Category.ALL) {

38 products.add(p) @ MethodDuration

39 } else {

40 products.add(getRandomProductFromCategory(c))

41 }
42 } Agent
a Lightrun agent is attached to

43 }

44 urn products your rgnnlng production service
at all times.

45} Agent Toms-MBP (pid 3914)

e LSBT Method »ductsService.java:getRandomPerCategory
47 Method
. N MethodDurati ?

48 if(cat = Category.ALL om¢ S The method whose

49 return getAllQ); Condition performar?ce you're interested
in measuring

50 }
Name

An informative name for the
metric, to be displayed
alongside the graph.

:_ _______________________ > Condition
Trigger metric collection
conditionally by specifying any
Java Expression - as simple or
as complex as you'd like.

You Can:

¢ Add metrics on-demand until you identify the issue while the app is running

¢ Performance metrics - use counters, timers, function durations and more on-
demand

e Custom metrics - define any numerical Java expression you want to visualise

e Count line execution occurrences

e Collect system statistics like latency and throughput through counters and timers

¢ Find performance and synchronization issues easily in the actual version you

released, not a local simulation

System Topology & Infrastructure

Lightrun is a 3-part system, comprised of Lightrun Plugins (installed on
developer computers), Lightrun Agents (installed on live applications)

and the Lightrun Server. Lightrun Serve

r is offered in 2 flavors: Lightrun

Cloud (our hosted solution) and Lightrun On-Prem (for on-prem

installations and airgapped networks).

(1)

The developer uses Lightrun's
IDE plugin to securely add
logs/ metrics/traces in
example.java line 100

(.

4
S
) IE
The data is

transferred to
the developer

@

Management Server
sends request to the

agent @

The data is piped to
APM/logging solutions

|5

©)

Agent inserts the code at the
specific location. Results are
sent to the Server

Lightrun Integrates With Logging & APM Solutions

Lightrun is integrated into the developer workflow, from the IDE to the
logging tools and APM. We support multiple integrations to ensure the
development and debugging process is frictionless.

Q LeGaLy

Prometheus Loggly
New Relic AppDynamics

¢ 9

Elastic Logz.io

#

Slack Nomad

Lightrun Runs Where You Do

splunk>

Splunk

Datadog

L

Dynatrace

SO0

StatsD

=

LogicMonitor

Sumo Logic

y

Fluentd

A

Sentry

Lightrun operates everywhere and anywhere: on-premise, in the cloud
(AWS, GCP, Azure), for microservices, for serverless, K8s, and more.
Debug in any environment across any infrastructure.

A s

docker

a

