Lightrun's Economic Impact
on Enterprise Logging &
Observability Costs

EEEEEEEEEEEE

Key Findings - Detalils

Lightrun’s Economic Impact

Observability Cost Savings
Value of Developer Productivity Improvements
Value of MTTR Imrpovements

Lightrun Costs

Total 3-Year Cost Savings

Cost Savings

Total Cost Savings (%)
Total Cost Savings ($)

Payback Period

Three-year ROI

Developer Productivity

Total Improvement in Productivity (%)
Total Cost Savings ($)
Developer Hours Reclaimed

Payback Period

Three-year ROI

MTTR (Mean Time To Resolve)

Average Reduction in MTTR (%)
Average Incremental Increase in Revenue ($)

Payback Period

Three-year ROI

LIGHTRUN’'S ECONOMIC IMPACT ON ENTERPRISE LOGGING & OBSERVABILITY COSTS

$466,278
$3,873,480
$1,644,000

$360,000

$5,623,723

31%
$155,426

< 5 Months

248.1%

21%
$3,873,480
59,592 Hours

< 2 Months

1434.6%

35%
$1,644,000

< 7 Months

609%

4 |

Contents

Introduction

Chapter 1: The Cost of Logging
e Cost

e Developer Productivity
e MTTR (Mean Time To Resolve)

Chapter 2: The Lightrun Developer
Observability Platform

e What Is Lightrun?

e What Is Dynamic Logging?

e Benefits of Dynamic Logging With Lightrun

e How to Use Dynamic Logging

Chapter 3: Total Economic Impact
of Lightrun

e Cost

e Developer Productivity

e Mean-Time-To-Resolve (MTTR)

e SumMmary
Case Studies

Final Thoughts

LIGHTRUN'S ECONOMIC IMPACT ON ENTERPRISE LOGGING & OBSERVABILITY COSTS

Introd:

CHAPTER 1

The Cost of Logging

Lightrun is a Developer Observability Platform that enables developers to
securely add logs, metrics and traces to live applications in real time, on
demand. No hotfixes, redeployments or restarts required.

The following document is based on Lightrun’s own customers’ experience,
internal benchmarking and industry data, and is derived from a thorough
investigation on the logging workflows of modern engineering organizations,
as well as a careful analysis of the impact of implementing Lightrun at
organizations in various levels of scale.

The impact of Lightrun on enterprise logging costs can be roughly
summarized according to three different perspectives:

1. Cost savings
2. Three year ROI
3. Payback period

An easy, “back-of-the-envelope” way to quantify the actual cost in each
perspective is by looking at the core challenges that businesses encounter
when it comes to logging. Specifically, we'll explore three main challenges,
and show how they can be quantified in each of the perspectives listed
above:

1. Licensing & Infrastructure Cost
2. Developer productivity
3. Mean-time-to-resolve (MTTR)

There are a few characteristics of logging that create problems for software-
driven businesses that need to move fast and innovate.

The first is that—with traditional static logging—one faces a number of key
limitations. The way around them is only ever to add more logs. However,
when the main solution is to add more logs, log volumes tend to grow
unexpectedly and exponentially.

The second characteristic is around the fact that creating and deploying a
log is not a frictionless process.

Since one can only add logs in development, adding more logs requires going
through a whole development cycle to test each iteration of said new logs.
This can create delays and interruptions and creates a tendency, very
common among modern developers, to overlog applications in order to
ensure that every possible contingency is accounted for.

LIGHTRUN'S ECONOMIC IMPACT ON ENTERPRISE LOGGING & OBSERVABILITY COSTS

This delays any attempts to resolve bugs, outages and technical issues
because of the need to redeploy the application in order to get visibility into
the problem. These problems translate into three core logging challenges
that will be reviewed in this section:

1. Cost: growing log volumes become expensive quickly

2. Developer productivity: writing, deploying, consuming and analyzing logs
is @ major distraction and time sink

W & ©

3. Mean-time-to-resolve (MTTR): the friction in the logging process creates
delays in fixing and repairing technical issues

In this chapter, we will explore each of these challenges in depth to more
deeply understand the core challenges facing businesses when it comes to

logging.

The volume of logs that companies are producing is spiraling out of control,
1 F COSt and with it the associated costs.

Below are some of the key challenges that are behind this rise in costs.
Logging Sprawl

Developers tend to over-log their applications, as there is no feedback loop
to prevent them from doing so.

Logs are a ‘just-in-case’ measure. They are often used to create the sense of
safety - developers end up writing a log for every conceivable situation to
ensure each incident or troubleshooting session will end in mitigation.

In addition, as logs can only be added during development and require a
(relatively) long release cycle for every new augmentation, a tendency to log
as much as one can during development naturally emerges.

Regardless of the actual problem in hand, the tool developers reach out to
is often the same: add more logs, that results in sprawling and spiraling log
volumes, without any easily-available alternative solution.

Logging Complexity

Cloud-native applications (which are growing in popularity) are more complex
and have more constituent parts, resulting in greater log volumes.

As cloud-native software development becomes the norm, a large array of
tools have been either heavily adapted or specifically written for cloud-native
workloads: APMs, logging utilities, observability tooling, network monitoring
tools, etc.

In addition, since every change made and deployed is adding complexity to
an already complex set of systems, observing everything in unison (and each
part individually) to ensure smooth operation is critical.

In cloud-native environments, developers are facing ever-increasing levels of

complexity and find themselves relying on logs more than ever in order to get
visibility into their applications.

LIGHTRUN'S ECONOMIC IMPACT ON ENTERPRISE LOGGING & OBSERVABILITY COSTS !7

Logging Imprecision

There is no way to know in advance which logs one will need, so developers
create hotfixes, saturating application codebases with one-time, “garbage”
logs.

Even with massive log coverage, it's very common for a troubleshooting
developer to not have all the information required at hand - mostly due to the
concept of “unknown unknowns” - there’s no way of knowing in advance
everything that might be needed, at any given point in time.

An interesting, repeating fact that we’ve learned through talking to our
customer engineering teams, is that the vast majority of logs created are
never consumed.

In fact, the practice of deploying a hotfix with more logs is so common that
some companies write playbooks specifically for adding new telemetry in
production. That information, naturally, generates a new set of questions to
be answered, which sparks another cycle of hotfixes, and so the cycle
repeats itself until the developer exhausts all the questions they needed to
ask of the relevant part of the application.

Logging in advance is imprecise - causing developers to follow a “rinse-and-
repeat” pattern of adding logging-only hotfixes to enrich the existing logging
with more granular information, resulting in increased logging volumes.

BUSi" Logging volumes are spiraling because of the complexity of the applications,
the need to log for every conceivable problem and the imprecision of the
original logs.

As the volumes spiral, so - naturally - does the cost.
We've seen among our customers that it is not unusual for companies that

process large volumes of data or incur large traffic spikes to spend over $2M
a year on logging ingestion and storage, alone.

Current logging pr
organizations'
and

LIGHTRUN'S ECONOMIC IMPACT ON ENTERPRISE LOGGING & OBSERVABILITY COSTS !/7

2. Developer
Productivity

Logs don’t directly add any value to the software we build or to the
customers we serve - they often fall under the category of “non-functional
requirements”: they help practitioners understand what’s going on when
things go wrong (or when they’re simply hard to comprehend), which might
otherwise cost time, money and reputation to fix.

The problem is that logging is not a frictionless process. It takes the
developers away from value-adding activities (like writing code) and forces
them to spend time and energy writing and deploying non-functional
requirements. This costs them time - which is easily translated into monetary
values - and reduces the overall time spent adding value to the business.

In this section we’ll explore some of the main impacts that logging can have
on developer productivity.

Deployment Times

The logging lifecycle is surprisingly long and complex, comprised of many
moving parts, and prone to failure due to reasons that are not always up to
the developer.

Application logs are usually added during development and consumed by
engineers when the apps are running, in production and other “live”
environments.

When the situation calls for more logs, a hotfix usually requires going through
the whole CI/CD pipeline - even for a single log line. This costs time (however
long the CI/CD pipeline takes to run), and can fail due to flaky tests or
problematic configuration parameters (which are abstracted away from most
developers and require a deep understanding of how the specific pipeline
has been built).

In the fastest companies we’ve surveyed, a release takes 5-6 minutes.
More commonly, though, we’ve seen pipelines that takes 30-50 minutes to
run, and more often, multiple hours (and, in extreme cases, multiple days).
Furthermore, pipelines fail due to many reasons are removed from
developers - requiring a restart to the entire pipeline after it is fixed.

Context Switching

Context switching is a form of multitasking requiring a developer to move
between unrelated tasks.

Every time a developer has to interrupt working on core business logic (i.e.
switch context), it interrupts his flow, making it harder for him to resume
working at the same pace and quality as before.

The fact that developers are continuously having to write new logs, wait for
them to be deployed, analyze the logs and then finally fix the problem is a
massive source of context switching.

In addition, the fact that logs are consumed outside of the developer’s IDE
requires them to jump out of what they are doing to attend to their logs,
which constitutes another significant context switch.

Over time, having to frequently switch context reduces productivity,
decreases creativity and results in lower quality software.

LIGHTRUN'S ECONOMIC IMPACT ON ENTERPRISE LOGGING & OBSERVABILITY COSTS !7

Hotfixing

Hotfixing involves releasing a relatively minor engineering update to a live
(hence, “hot”) system to resolve a bug or issue (or, more often than not, to
add logs that were missing during troubleshooting).

If the current logs are not providing enough information on a given problem,
there’s a need to add new logs to get that extra bit of granularity.

Hotfixing is a quick way to rapidly deploy logs to a live system. However,
instrumenting the application is not always a matter of just writing the logs -
there’s a need to write the logs, commit the to the source code repository,
trigger the correct pipeline for that piece of code, ensure no side effects
happen, reproduce the relevant state, then re-trigger the log-emitting
action.Furthermore, developers tend to require several rounds of hotfixing.

In addition, it's often the case that the first round clarifies the situation but
also raises new questions - which then require further investigation (and
hence more hotfixes, and more setup time).

Developer & DevOps Friction

In the modern software world, there is often a split or barrier between the
development and operations teams that creates a great deal of friction when
communication and collaboration is required between them to understand
what’s going on in a live system.

Developers and operations are often unfamiliar with the processes,
responsibilities, tooling and languages that the other side uses. This leads to
miscommunications and delays when deploying logs requires working partly
on the infrastructure (the domain of operations) and the application (the
domain of the developers).

BUSInESS The sum impact of all these different challenges is that developers:

e Spend less time on value-add tasks

e Produce lower quality work as a result of context switching and
distractions

e Are less happy because due to high friction and fragmentation in their
workflows

At the business level this then translates into:

e Slower innovation
o Less satisfied customers
e Less satisfied employees

As developers are expensive to hire, it's especially important that they are
working on the most valuable projects and not spending copious amounts of
time on non-functional requirements.

The above business impacts all translate into missed revenue streams in
terms of enhancements, overall system reliability and developer attrition.

LIGHTRUN'S ECONOMIC IMPACT ON ENTERPRISE LOGGING & OBSERVABILITY COSTS !7

One of the most important—but under-appreciated metrics in software
3 = M ea.n - development is mean-time-to-resolve (MTTR).

TI m e_TO_ This is the average time it takes to fix a bug or failure, and return an
application to its operational state, as well as - hopefully - ensuring that the

Reso I\’e failure won't happen again.

The reason why technical leadership teams are slowly starting to become

(MTTR) more and more interested in this metric is that there is a strong correlation
between MTTR and customer satisfaction, as traditionally quantified by NPS
surveys.

If MTTR is poor, customer experience will suffer greatly and customers will
start to churn. Conversely, if MTTR is excellent, customers will scarcely
notice errors and outages and their experience will not suffer because of it.

The following section breaks down the various tenants that contributes to
the increase of MTTR over time.

Deployment Time

When deploying logs to find the source of an issue takes a long time, the
time it takes to resolve that issue is extended equally.

Often, when something goes wrong, the logs and other telemetry required to
get down to the root cause of the issue is not in place, as we've explored
above.

In this case, to begin resolving the problem there’s a need to deploy new logs
to get the information required for proper mitigation.

However, as mentioned before, deploying more telemetry requires going
through the whole CI/CD cycle - and the longer the CI/CD cycle, the longer it
takes to troubleshoot the issue at hand.

Hotfixing “Rounds”

When developers issue hotfixes to add more logs to a live application, there
is a tendency to require several rounds of hotfixing, each of which causes
more delays and friction.

When developers issue a hotfix with more logs, the information that the new
logs reveal often raises more questions, which requires several more rounds
of hotfixing to address, prior to the developer has full visibility of the
situation.

Each round of hotfixing requires the developer to redeploy the application
and do all the required setup for emitting the log. When multiplied by the
number of hotfixes

Division of responsibility

Some issues that arise fall into the ‘gap’ between development and

operations. It is unclear where responsibility lies, which generates frictions
and delays the resolution of an issue.

LIGHTRUN'S ECONOMIC IMPACT ON ENTERPRISE LOGGING & OBSERVABILITY COSTS !7

When a bug is partly an infrastructure issue and partly an application issue, it
is unclear whether the devs (who look after the application) or the ops (who
look after the infrastructure) should take responsibility. This includes taking
responsibility for instrumenting the logs that helps resolve the bug.

The above situation means, that, to deploy the right logs, the two sides
end up having to spend a lot of time going back and forth, creating a lot of
friction and delays. They are also less familiar with each others’ toolsets,
which exacerbates the friction.

Distance From the Issue

Best practice generally dictates that developers should not directly connect
to production machines, which means that adding logs is the only way to
learn about the true state of the application process or the machine that runs
it.

The sensitivity of the customer data, the potential security risks, and the
constant fear of making an error in production means that developers are
often forbidden from connecting to machines running production workloads
directly.

Furthermore, with the seemingly never-ending expansion of cloud
computation resource usage, developers are not only physically distant from
the machines that are running their code, they’re also conceptually removed
from the production computer, with most providers running virtual machines
(or derivatives thereof) and not physical hardware, developers can’t interact
with as they used to.

When developers can’t connect directly to get a sense of the state of the
running application, they often resort to the next best things - logs and
telemetry - which, when factoring in the current workflows around
telemetry, provide a poor replacement for a direct connection.

BUSlnESS The impact of poor MTTR affects a few areas of the business.

On one hand, it delays the resolution of technical issues that often takes up
an unnecessary amount of time, and, negatively impacting developer
productivity, and slowing down innovation.

On the other hand, it results in overly-long delays to resolve technical issues,
and negatively affects the customer experience. The hold-ups that issues
related to logging cause in terms of delaying the resolution of technical
issues results in degradation of service to the customer. It can even result in
companies not being able to meet their SLAs.

MTTR is now a major indicator of the technical health of engineering

organizations, with poor performance resulting in less productivity, slower
innovation and a poorer customer experience.

LIGHTRUN'S ECONOMIC IMPACT ON ENTERPRISE LOGGING & OBSERVABILITY COSTS

CHAPTER 2

The L|g|. Lightrun is a Developer Observability Platform that enables developers to
add logs, metrics and traces to live applications in real-time, on-demand.

DE\IE' The outputs are then available for consumption immediately from the IDE,

Ob" CLI or APM of choice.

P' With Lightrun’s revolutionary approach to observability, the platform enable

engineering teams to connect to their live applications and continuously
identify critical issues without continuous hotfixes, redeployments or restarts.

The Lightrun Sandbox™ ensures there are no side effects or unexpected
performance overhead to the live application, and verified the integrity,
stability and security of the instrumentation. Lightrun meets the developers
where they are: in the cloud, in micro-services and in serverless functions, in
bare-metal servers and Kubernetes - Lightrun is platform-agnostic and relies
on the runtime environment alone in order to run.

A Gartner In addition, Lightrun was recently named a Gartner Cool Vendor in
Fil:(;ps General \(;SN%LOR Observability and Cloud Operations, and is a member of the FinOps
L Partner 2021 Foundation.

Lightrun Management Server \v

Lightrun’s Runtime SDKs

How Does It Work?

Lightrun is a three-tier system:
1. An runtime agent is installed alongside the live
application and spins up on boot.
. It communicates with a server that tells it which
logs to add and where to add them.
. A suite of IDE plugins / our CLI client talks to the When the app executes that code, those added logs
server, allowing developers to indirectly “connect” are emitted just like normal application logs and can be

to their live applications, no SSH or legacy remote sent to a console, a file, an external observability
debugging protocols required. system, or back to the server and then onto the client

(usually an IDE plugin or a CLI client).

The agent adds the new code for the new logs on-the-

fly using high-end instrumentation techniques for our This setup allows for the addition of new log
supported runtimes. No actual source code ever leaves statements into a running application at any point,
the premises and no source code is modified on in the and removes the need to reproduce specific state or
source control system (i.e. GitHub, GitLab, etc..) . conditions during troubleshooting.

LIGHTRUN'S ECONOMIC IMPACT ON ENTERPRISE LOGGING & OBSERVABILITY COSTS !7

https://www.finops.org/about/partner-members/
https://www.finops.org/about/partner-members/

Dvnamic Logglng Lightrun’s plgtform aIIovys engineering te.ams to f.undamentélly Cha.nge their
;) approach to instrumenting telemetry by introducing dynamic logging.
With Lightrun

The best way, by far, to reduce logging costs is - unsurprisingly - to log less.
A great way to do so is to use Lightrun to replace a portion of the codebase’s
static logs (i.e. logs added during development, which means, all the logs in

most production systems) with dynamic logs (i.e. logs added only during the
runtime of the application).

Dynamic logs are those that can be added to an application at runtime
without requiring source code modification or triggering a whole new
development cycle.

Dynamic logs are:

Ephemeral
Lightrun logs “live” and “die” as required. They are added at runtime, do not
persist in the codebase, and are only emitted so long as they are ‘live..

Real-time

Lightrun logs can be added immediately to live applications, i.e. they can be
instrumented and consumed on the fly, in real time, without having to
redeploy the application.

Conditional

Lightrun logs can be emitted with very precise conditionality. For example,
they can be emitted for one machine or an entire production fleet. Similarly,
developers can choose to log for a specific user or class of users, e.g. people
from a specific geography.

IDE-First

Lightrun logs can be instrumented and consumed right from the IDE. This
increases developer productivity and velocity by reducing the need for
context switching while troubleshooting.

Optionally Intersperseable
If need be, Lightrun logs can be timestamped and correlated with existing
application logs, and consumed by the same observability systems.

Granular

Lightrun logs provide the exact information needed, at the time it is needed
(instead of logging everything possible, then “mining” (i.e. analyzing) the
information for the exact bit required).

Using Lightrun allows deve
emitted log volumes by el
“cover” every possible

Instead of relying on these lo
instantly get visibility into tl
redeploy the application

Benefits of Dynamic Logging with Lightrun

Technical Benefits Slash log Volumes

Using dynamic logging, developers can write highly-targeted logs that
pinpoint telemetry to specific users/machines. These logs are also ephemeral
- meaning they are automatically removed once they are no longer required
(often after a set, pre-configured period of time).

This means that instead of logging everything and analyzing later, only
critical logs will be added to the code in development. If there’s a new metric
to add or a specific aspect of the application that requires additional logging,
the dynamic logging approach allows developers to instrument those pieces
of telemetry on the fly - without having to redeploy the application.

The result is that the majority of logs previously required can now be
eliminated, allowing developers to focus solely on the logs needed for
compliance and normal operation of the application - while adding more logs
on the fly, as the need arises.

Lightrun, on average, enables engineering organizations to reduce logging
volumes by 60%.

Eliminate the Need to Redeploy the Application

The process of dynamic logging is shorter, simpler and more ergonomic than
the traditional, static logging workflow.

Instrumenting a static log consists of many different steps - mainly due to
the need to go through the entire CI/CD pipeline, which can be lengthy and
prone to test failures (related or unrelated to the change at hand).

Lightrun, however, is based on real-time instrumentation that does not rely
on actual code being introduced into the codebase. This approach - called
dynamic logging - is secure, highly-performant, and read-only while
eliminating the need to redeploy the application. This makes the overall
process much simpler and shorter.

Reduce Context Switching

Because logs can be instrumented and consumed from the IDE, developers
don’t have to switch contexts when troubleshooting between their
development environment, the CI/CD pipeline tooling, and their APM or
logging platform.

This helps the developers to stay focused on the job at hand, eliminates
distractions and delays, and generally reduces the friction involved with
shedding more light on the live execution of the application.

Reduce Irrelevant Noise and Increase Granularity

When logging everything, an issue rising up to the surface requires

reviewing, analyzing and extracting valuable information from a large volume
of data.

LIGHTRUN'S ECONOMIC IMPACT ON ENTERPRISE LOGGING & OBSERVABILITY COSTS !/7

The high granularity of dynamic logs allows developers to choose what to log
and when to log it, instead of logging everything and “mining” the information
later for valuable data.

Reduce Mean-Time-To-Resolve (MTTR)

Troubleshooting complex systems often involves the addition of more
telemetry (via hotfixes, which requires redeployments), the consumption of
said telemetry, and the addition of more telemetry following what the
developer learned from the previous iterations.

This is a non-agile, iterative process that increases the time it take to resolve
incidents (often measured in terms of MTTR) due to the long CI/CD cycles
required for a large amount of hotfixes.

Lightrun, instead, opts to add logs dynamically, at runtime, and route the
information directly to the IDE. By doing so, it enables developers to
drastically reduce debugging time and allows for a more ergonomic
troubleshooting experience.

Reduce Team Friction

Lightrun logs can be added dynamically throughout the SDLC: in dev, in QA,
in staging, in Cl, and even in production. Regardless of the environment,
Lightrun logs are added and consumed just the same - in real time, on
demand and right into the developer’s IDE or CLI.

In practice, that means that developers are empowered to ask questions and
get answers themselves, rather than being required to consult with other
team members (most notably DevOps engineers, who operate the
infrastructure running the application) to get visibility into application’s state.
This helps reduce the dependency on - and by proxy the friction with - the
developer’s team members.

Bus|ness Beneflts ;x;ceifsr.mlcal benefits above translate directly into significant business

Massively Lower Costs

When lowering the volume of static logs emitted and enabling developers to
get an even improved level of clarity using dynamic logs, engineering
organizations reduce the overall costs of logging and observability while
maintaining the same ergonomic developer experience.

See Chapter 3 (Lightrun’s Economic Impact on Enterprise Logging &
Observability Costs) for a breakdown of the cost savings that can be
achieved with dynamic logging.

Lightrun, on average, enables engineering organizations to reduce logging
costs by 30%.

Reduce MTTR & Decrease Time to Market

Logging is a non-functional requirement, not a customer-oriented value-add.
The less time and energy developers spend writing and maintaining
application logs, the more time they have to focus on building software that
customers want to use.

LIGHTRUN'S ECONOMIC IMPACT ON ENTERPRISE LOGGING & OBSERVABILITY COSTS !/7

By reducing context switching, removing the need to redeploy in each
addition of telemetry, and improving the troubleshooting experience,
dynamic logging can significantly accelerate the entire software
development lifecycle.

Improve Developer Productivity and Experience

Dynamic logs create a more ergonomic experience of troubleshooting, with
less reliance on operational requirements - like redeploying and writing
queries inside the APM / logging platform.

In addition, Lightrun works completely within the development environment -
every Lightrun action can be instrumented and consumed from the same
interface the application code is written in.

This reduction in friction results in more productive developers, spending
less time on configuration and operational work, and more time writing
new features.

Reducing Logging Costs witl

This section comes as a reference to a few, select external sources that explain - in more depth - how to perform
some groundwork prior to implementing dynamic logging in your organisation, in order to extract the most value out

of the practice.

There are three main steps to the process: first, an organisation must perform a log audit to take inventory of the
existing logging sitaution. Then, all reproducible, static logs must be removed as they can easily be replaced with
dynamic logs. Finally, an optimization of the remaining logs should take place in order to cement the benefits.

Performir
Audit

Replacing
Reprod

Optimize
Remair

A log audit includes a review of the logging output of the entire system,
picking apart the specific portions that produce the logs that cost the most,
and highlighting which of these can be considered for removal. This amounts
to “taking inventory” of the system, and enables the organisation to get an
initial estimate of how valuable dynamic logging can potenitally be once
implemented.

Reproducible logs are logs that can be easily re-emitted by developers on
local machines or on staging environments - in other words, . As the cost for
recreating them is low, they’re great candidates for removal and re-
instrumentation using dynamic logging in production. The associated risk is
low and the potential benefit is high - saving on both precious developer time
and observability costs.

It's advisable to follow the Pareto principle (also known as the 80/20 rule) in
any optimization effort. In the case of logging, it's beast to focus on high-
frequency, high-cost logs. The way to do it in the context of the rest of the
codebase is to find ‘big offender’ logs - that are specific, local maxima points
of log emissions - as well as identify other opportunities for global
optimizations in every application module.

CHAPTER 3

Lightrun' Understanding the economic impact of any system on an organization, needs
to cover not only the primary cost savings - how much reduction was

|mpaCt incurred in license fees and/or compute resources - but also secondary
savings that are harder to quantify (like developer hours reclaimed or how
much faster the support process becomes).

The following chapter explores the impact of Lightrun from three
perspectives:

e Costs

e Developer Productivity

e MTTR (Mean Time To Resolve)

While covering each perspective, we'll look at 3 different metrics to convey
the impact Lightrun has on the entire engineering organization: cost savings
incurred after implementing the system, 3-year ROI of the implementation &
the payback period for using Lightrun in the organization.

Dynamic logging has a major effect on the logging costs incurred by

1 B COSt engineering organization.

TOTAL COST OF LOGGING To keep things simple yet offer a robust framework of exploration, we've
chosen to review the cost factor via the lens of a common use case: a large

WITHOUT LIGHTRUN engineering team, working with a managed, centralized observability vendor.

We'll use as an example, an application with a relatively high amount of
transactions, and look at the logging volumes they bring to the table:

e 40TB of monthly ingested logs
e 9B Monthly log events (see note below)
e 30-day retention

Note: A “log event” is a metric used to denote processing / analysis of
logs in order to have them available for querying. These are reflected
differently on the pricing of each observability system, and so we've
grouped them under their term “log events”.

The following table breaks apart the cost of logging in said application,
considering the logs are instrumented statically, during development (as the
current practice goes) and analyzed using a centralized, managed
observability system in a production setting:

LIGHTRUN'S ECONOMIC IMPACT ON ENTERPRISE LOGGING & OBSERVABILITY COSTS !/7

LOGGING COSTS, PRE-LIGHTRUN

REF. METRIC CALC. FIGURES NOTES

A1 # of Ingested Logs (Monthly) Customer Case Study 40TB

A2 # of Log Events (Monthly) Customer Case Study 9B

A3 # of Retention Days Customer Case Study 30

A4 Yearly Log Transmission / Egress Costs $12*A1*0.09 $43,200 Based on AWS data egress pricing
A5 Yearly Log Ingestion Costs $12*A1%0.1 $48,000

A6 Yearly Log Processing / Indexing Costs $12*A2%3.75 $405,000

A7 Total Yearly Managed Observability Costs A4+A5+A6 $496,200

Note: The figures above focus on logging alone, without focusing on the
cost of the rest of the tooling often provided by observability vendors (who
often provide additional tooling for various levels of the infrastructure aside
from the code level).

TOTAL COST OF LOGGING Lightrun helps save on costs by:

WITH LIGHTRUN e Swapping redundant static logs with as-required dynamic logging
e Reducing reliance on self-hosted or managed logging systems

Note: the table below factors in a 60% reduction of log volumes using
Lightrun, following the case study and our own internal benchmarking.

LOGGING COSTS, POST-LIGHTRUN

REF. METRIC CALC. High Application NOTES
Transaction Volume

B1 # of Ingested Logs (Monthly) A1x40% 16TB Up to 60% log volume reduction
B2 # of Log Events (Monthly) A2x40% 2.4B Up to 60% log volume reduction
B3 # of Retention Days A3 30

B4 Yearly Log Transmission / Egress Costs $12*B1*0.09 $17,280 Based on AWS data egress pricing
B5 Yearly Log Ingestion Costs $12*B1*0.1 $19,200

B6 Yearly Log Processing / Indexing Costs $12*B2%3.75 $162,000

B7 Total Costs (Post-Lightrun) B4+B5+B6 $198,480

C1 Lightrun Costs (Yearly) Lightrun pricing $162,000

C2 Risk Adjustment 7% $120,000

D1 Total Costs (Pre-Lightrun) A7 $496,200

D2 Total Costs (Post-Lightrun) B7+C1*(1+C2) $340,774

D3 Total Cost Savings (Post-Lightrun) D1-D2 $155,426

D4 Total Cost Savings (Post-Lightrun) % 100%-(D2/D1) 31%

S U M MARY 31% reduction in logging costs

248.1% ROl in a 3-year period

< 5 Months to pay back the cost of the system

Total Cost Savings With Lightrun

Total Cost Savings (pre vs post Lightrun) $297,720

Lightrun Costs $120,000

Three-year ROI
Three-year total cost savings (without Lightrun) $893,160
Three-year Lightrun costs $360,000

Payback Period
Total cost savings (pre vs post Lightrun) $297,720
Lightrun costs $120,000

In the long run, an organization that uses dynamic logging can save
100s of thousands to millions of dollars in logging costs simply by
removing reproducible logs and replacing them with dynamic logs.

LIGHTRUN'S ECONOMIC IMPACT ON ENTERPRISE LOGGING & OBSERVABILITY COSTS

4

Dynamic logging also has a very noticeable effect on developer productivity.

2. Developer
Productivity

By streamlining the practice of hotfixing and making it easier for developers
to get real-time, on-demand information without the operational overhead,
Lightrun saves on many small tasks often carried out by developers
throughout their work day. These savings compound, and can be easily
quantified (in developer hours) - resulting in significant cost savings over
time.

The table below shows the accumulated benefits of using dynamic logging
over a period of three years with the same scenario discussed in part one
(large engineering team, application with a high transaction volume), and
covers the following developer productivity metrics:

DEVELOPER PRODUCTIVITY OVER 3 YEARS

e Instrumenting metrics for performance testing

Context switching
Reduced hotfixing
Enhanced focus / reduced friction
Reduced profiling/APM usage

REF. METRIC CALC. YEAR1 YEAR 2 YEAR 3

A1 Number of developers 1000 1000 1000

A2 Percentage of developers using Lightrun 20% 30% 50%

A3 Number of developers using Lightrun AT*A2 200 300 500

A4 Percentage of developer time spent 30% 30% 30%
Troubleshooting, Understanding Code and
Exploring Codebases

A5 Productivity Improvement: instrumenting 2% 2% 2%
metrics for performance testing

A6 Productivity improvement: reduced 3% 3% 3%
context switching

A7 Productivity improvement: reduced hotfixing 4% 4% 4%

A8 Productivity improvement: enhanced focus / 3% 3% 3%
reduced friction

A9 Productivity Improvement: reduced profiling / 4% 4% 4%
APM usage

A10 Productivity improvement from reduced Technical debt is 0% 2% 5%
technical debt reduced over time

A1 Total percentage improvement in AS+AG+A7 16% 18% 21%
development productivity +A8+A9+A10

A12 Hours saved per developer, per year 2,080*A11*A4 100 112 131

A13 Total hours saved by developers A3*A12 19968 33696 65520

Al4 Percentage of time recaptured for productivity 50% 50% 50%

A15 Hours recaptured for productivity A13*A14 9984 16848 32760

A16 Fully burdened hourly salary $130K annually $65 $65 $65

B1 Value of development recaptured A15*A16 $648,960 $1,095,120 $2,129,400

B2 Risk adjustment V15%

B3 Value of development recaptured $551,616 $930,852 $1,809,990

(risk-adjusted)

S U M MARY 21% improvement in developer productivity

1434.6% ROl over a 3-year period
119,184 developer hours saved over a 3-year period

< 2 months to pay back the cost of the system

Note: While not factored into the figures above, one should also factor in the
revenue generated from new products and features developers would be
able to create with these additional 59,592 hours of work every year.

Three-year ROI

Three-Year Development Spending Reclaimed for Value-Add Work $3,873,480
Three-Year Lightrun Costs $270,000
‘ Three-Year ROI 1434.6%

Payback Period

Total Year-One Development Spending Recaptured $648,960
Lightrun Costs $90,000
Payback Period < 2 Months

Both the ROI and the time-to-pay-for-itself will accelerate over time as more and more developers start using the
platform and get more accustomed to this way of working.

Using dynamic logging with Lightrun can increase productivity and
save developers 10s of thousands of hours in aggregate.

LIGHTRUN'S ECONOMIC IMPACT ON ENTERPRISE LOGGING & OBSERVABILITY COSTS !/7

In this section, we’ll explore how dynamic logging impacts the average time
3- MTTR (Mean to resolve incidents in production, usually referenced in terms of MTTR.

TI me TO RESOIVE) Dynamic logging affects this process by aiding developers in the following

ways:

e Eliminating the need for application redeployment

e Eliminating the need for debug-log hotfixing (i.e. hotfixing just to add
more telemetry)

e Preventing repetitive, non-productive developer work

e Healing the division of responsibility between Dev and Ops

e Allowing developers to directly find out what is going on in a machine in
real time

The table below shows the accumulated benefits of using dynamic logging
over a period of three years, covering the following MTTR metrics:

e Reliance on properly-functioning production systems
e Revenue at risk due to product failures and downtime
e Revenue recaptured by improved uptime and performance

MTTR OVER 3 YEARS

REF. METRIC CALC. YEAR1 YEAR 2 YEAR 3
Al RR - Annual Recurring Revenue Industry Scaleup Composite $5,000,000 $12,000,000 $20,000,000
A2 Percentage of revenue that relies on properly- Industry Scaleup Composite 80% 80% 80%

functioning production systems

A3 Percentage of revenue at risk for cancellation Industry Scaleup Composite 15% 15% 15%
due to product failures and downtime

A4 Total revenue at risk for cancellation due to AT*A2*A3 $600,000 $1,440,000 $2,400,000
product failures and downtime

AS Revenue re-captured by better uptime and Internal Customer Information 30% 35% 40%
performance due to decreased MTTR

A5 Increased incremental revenue A4*A5 $180,000 $504,000 $960,000

B1 Risk Adjustment $12%

B2 Increased incremental revenue (risk- $158,400 $443,520 $844,800
adjusted)

LIGHTRUN’'S ECONOMIC IMPACT ON ENTERPRISE LOGGING & OBSERVABILITY COSTS !7

SU M MARY 35% reduction in MR, on average

609% ROI over a 3-year period
< 7 months w pay back the cost of the system

Three-year ROI

Three-Year Increase in Incremental Revenue $1,644,000
Three-Year Lightrun Costs $270,000
Three-Year ROI 609%

Payback Period

Total Year-One Increase Incremental Revenue $180,000
Lightrun Costs $90,000
Payback Period <7 Months

Both the ROI and time-to-pay-for-itself will accelerate over time as more and more developers start using the
platform over time and get more accustomed to this way of working.

CONCLUSION

Lightrun’s Economic Impact Over a 3-Year Period

Observability Vendor Cost Savings $466,278
Value of Developer Productivity Recaptured $3,873,480
Value of Revenue Recaptured due to Reduced MTTR $1,644,000
Lightrun Costs -$360,000
Total Cost Savings $5,623,758

LIGHTRUN'S ECONOMIC IMPACT ON ENTERPRISE LOGGING & OBSERVABILITY COSTS !/7

CASE STUDY

Taboola:

Reducing MTTR & Saving 260+ Debugging Hours A Month

The Challenge

Taboola’s production environment is particularly
dynamic. With many different features in
development simultaneously to accommodate the
needs of the business, their developers push a large
number of changes on a daily basis.

Taboola was looking for a solution that will enable
them to make sure each released version works
without a hitch. Ultimately, they looked for a tool
that would allow them to troubleshoot issues and
validate feature behavior in production services in a
quick, developer-friendly

Read the full case study here>

CASE STUDY

Start.lo:
Reducing MTTR By 50-60%

The Challenge

Start.io handles more than 30 billion requests a day,
resulting in complicated production issues. Most
notably, concurrency, parallelism issues that are
hard to replicate locally and can lead to severe
outages, as well as problems with software-defined
caches.

Read the full case study here>

LIGHTRUN’'S ECONOMIC IMPACT ON ENTERPRISE LOGGING & OBSERVABILITY COSTS

The Result

With instant, real-time production logs, snapshots,
and metrics, Taboola developers now save precious
incident resolution time previously spent waiting for
their hotfixes to deploy. Using Lightrun on a
constant basis decreases MTTR, increases the rate
at which Taboola deploys new features to
production, and improves each individual developer’s
productivity.

The process has resulted in over 260 debugging
hours saved every month.

Stnrt.io

The Result

By leveraging Lightrun, the client’ developers could
write conditional logs that sends them proactive
alerts when the issues in question occur. This
“catches” the issue and sends the report straight
into the developer’s IDE.

This process has accelerated the client incident
resolution by 50-60%.

Final Thoughts

Organizations are forced to log more than they should because of a (observed) lack of alternatives. As a result, costs
spiral, developer productivity is negatively impacted, and MTTR is on a constant rise - especially in complex, cloud-
native environments.

By using dynamic logging with Lightrun developers can fundamentally change how their organization approaches
logging. Instead of “logging everything and analyzing later”, developers can now log on an “as-required” basis - log

only “what you need, when you need it".

This can cut log volumes (and the associated costs) by up to 40%, improve developer productivity significantly,
reduce mean-time-to-resolve, improve time to market, and create higher-quality software.

Find this document interesting and would like to
Implement our playbook in your organisation?

Book a meeting with us>

LIGHTRUN'S ECONOMIC IMPACT ON ENTERPRISE LOGGING & OBSERVABILITY COSTS

